shulkerscript-lang/src/semantic/mod.rs

603 lines
21 KiB
Rust

//! This module contains the semantic analysis of the AST.
#![allow(clippy::missing_errors_doc)]
use std::collections::HashSet;
use error::{
IncompatibleFunctionAnnotation, InvalidNamespaceName, MissingFunctionDeclaration,
UnresolvedMacroUsage,
};
use crate::{
base::{self, source_file::SourceElement as _, Handler},
lexical::token::{MacroStringLiteral, MacroStringLiteralPart},
syntax::syntax_tree::{
declaration::{Declaration, Function, ImportItems},
expression::{Expression, FunctionCall, Parenthesized, Primary},
program::{Namespace, ProgramFile},
statement::{
execute_block::{
Conditional, Else, ExecuteBlock, ExecuteBlockHead, ExecuteBlockHeadItem as _,
ExecuteBlockTail,
},
Block, Grouping, Run, Semicolon, SemicolonStatement, Statement, VariableDeclaration,
},
AnyStringLiteral,
},
};
pub mod error;
impl ProgramFile {
/// Analyzes the semantics of the program.
pub fn analyze_semantics(
&self,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
self.namespace().analyze_semantics(handler)?;
let mut errs = Vec::new();
let function_names = extract_all_function_names(self.declarations(), handler)?;
for declaration in self.declarations() {
if let Err(err) = declaration.analyze_semantics(&function_names, handler) {
errs.push(err);
}
}
#[expect(clippy::option_if_let_else)]
if let Some(err) = errs.first() {
Err(err.clone())
} else {
Ok(())
}
}
}
fn extract_all_function_names(
declarations: &[Declaration],
handler: &impl Handler<base::Error>,
) -> Result<HashSet<String>, error::Error> {
let mut function_names = HashSet::new();
let mut errs = Vec::new();
for declaration in declarations {
match declaration {
Declaration::Function(func) => {
let name = func.identifier();
if function_names.contains(name.span.str()) {
let err = error::Error::from(error::ConflictingFunctionNames {
name: name.span.str().to_string(),
definition: name.span(),
});
handler.receive(err.clone());
errs.push(err);
}
function_names.insert(name.span.str().to_string());
}
Declaration::Import(imp) => match imp.items() {
ImportItems::All(_) => {
handler.receive(base::Error::Other(
"Importing all items is not yet supported.".to_string(),
));
}
ImportItems::Named(items) => {
for item in items.elements() {
if function_names.contains(item.span.str()) {
let err = error::Error::from(error::ConflictingFunctionNames {
name: item.span.str().to_string(),
definition: item.span(),
});
handler.receive(err.clone());
errs.push(err);
}
function_names.insert(item.span.str().to_string());
}
}
},
Declaration::Tag(_) => {}
}
}
#[expect(clippy::option_if_let_else)]
if let Some(err) = errs.first() {
Err(err.clone())
} else {
Ok(function_names)
}
}
impl Namespace {
/// Analyzes the semantics of the namespace.
pub fn analyze_semantics(
&self,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
let name = self.namespace_name();
Self::validate_str(name.str_content().as_ref()).map_err(|invalid_chars| {
let err = error::Error::from(InvalidNamespaceName {
name: name.clone(),
invalid_chars,
});
handler.receive(err.clone());
err
})
}
}
impl Declaration {
/// Analyzes the semantics of the declaration.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::Function(func) => func.analyze_semantics(function_names, handler),
Self::Import(_) | Self::Tag(_) => Ok(()),
}
}
}
impl Function {
/// Analyzes the semantics of the function.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
let macro_names = if let Some(parameters) = self.parameters() {
if let Some(incompatible) = self
.annotations()
.iter()
.find(|a| ["tick", "load"].contains(&a.assignment().identifier.span.str()))
{
let err =
error::Error::IncompatibleFunctionAnnotation(IncompatibleFunctionAnnotation {
span: incompatible.assignment().identifier.span(),
reason:
"functions with the `tick` or `load` annotation cannot have parameters"
.to_string(),
});
handler.receive(err.clone());
return Err(err);
}
parameters
.elements()
.map(|el| el.span.str().to_string())
.collect()
} else {
HashSet::new()
};
self.block()
.analyze_semantics(function_names, &macro_names, handler)
}
}
impl Block {
/// Analyzes the semantics of a block.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
let mut errs = Vec::new();
for statement in &self.statements {
if let Err(err) = match statement {
Statement::Block(block) => {
block.analyze_semantics(function_names, macro_names, handler)
}
Statement::DocComment(_) | Statement::LiteralCommand(_) => Ok(()),
Statement::ExecuteBlock(ex) => {
ex.analyze_semantics(function_names, macro_names, handler)
}
Statement::Grouping(group) => {
group.analyze_semantics(function_names, macro_names, handler)
}
Statement::Run(run) => run.analyze_semantics(function_names, macro_names, handler),
Statement::Semicolon(sem) => {
sem.analyze_semantics(function_names, macro_names, handler)
}
} {
errs.push(err);
};
}
#[expect(clippy::option_if_let_else)]
if let Some(err) = errs.first() {
Err(err.clone())
} else {
Ok(())
}
}
}
impl ExecuteBlock {
/// Analyzes the semantics of the execute block.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::HeadTail(head, tail) => {
let head_res = head.analyze_semantics(function_names, macro_names, handler);
let tail_res = tail.analyze_semantics(function_names, macro_names, handler);
if head_res.is_err() {
head_res
} else {
tail_res
}
}
Self::IfElse(cond, then, el) => {
let cond_res = cond.analyze_semantics(function_names, macro_names, handler);
let then_res = then.analyze_semantics(function_names, macro_names, handler);
let else_res = el.analyze_semantics(function_names, macro_names, handler);
if cond_res.is_err() {
cond_res
} else if then_res.is_err() {
then_res
} else {
else_res
}
}
}
}
}
impl Grouping {
/// Analyzes the semantics of the grouping.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
self.block()
.analyze_semantics(function_names, macro_names, handler)
}
}
impl Run {
/// Analyzes the semantics of the run statement.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
self.expression()
.analyze_semantics(function_names, macro_names, handler)
}
}
impl Semicolon {
/// Analyzes the semantics of the semicolon statement.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self.statement() {
SemicolonStatement::Expression(expr) => {
expr.analyze_semantics(function_names, macro_names, handler)
}
SemicolonStatement::VariableDeclaration(decl) => {
decl.analyze_semantics(function_names, macro_names, handler)
}
SemicolonStatement::Assignment(_assignment) => {
// TODO: correctly analyze the semantics of the assignment
Ok(())
}
}
}
}
impl ExecuteBlockHead {
/// Analyzes the semantics of the execute block head.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::Align(align) => align.analyze_semantics(macro_names, handler),
Self::Anchored(anchored) => anchored.analyze_semantics(macro_names, handler),
Self::As(r#as) => r#as.analyze_semantics(macro_names, handler),
Self::At(at) => at.analyze_semantics(macro_names, handler),
Self::AsAt(asat) => asat.analyze_semantics(macro_names, handler),
Self::Conditional(cond) => cond.analyze_semantics(function_names, macro_names, handler),
Self::Facing(facing) => facing.analyze_semantics(macro_names, handler),
Self::In(r#in) => r#in.analyze_semantics(macro_names, handler),
Self::On(on) => on.analyze_semantics(macro_names, handler),
Self::Positioned(pos) => pos.analyze_semantics(macro_names, handler),
Self::Rotated(rot) => rot.analyze_semantics(macro_names, handler),
Self::Store(store) => store.analyze_semantics(macro_names, handler),
Self::Summon(summon) => summon.analyze_semantics(macro_names, handler),
}
}
}
impl ExecuteBlockTail {
/// Analyzes the semantics of the execute block tail.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::Block(block) => block.analyze_semantics(function_names, macro_names, handler),
Self::ExecuteBlock(_, ex) => ex.analyze_semantics(function_names, macro_names, handler),
}
}
}
impl Conditional {
/// Analyzes the semantics of the conditional.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
self.condition()
.analyze_semantics(function_names, macro_names, handler)
}
}
impl Parenthesized {
/// Analyzes the semantics of the parenthesized condition.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
self.expression()
.analyze_semantics(function_names, macro_names, handler)
}
}
impl Else {
/// Analyzes the semantics of the else block.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
self.block()
.analyze_semantics(function_names, macro_names, handler)
}
}
impl MacroStringLiteral {
/// Analyzes the semantics of the macro string literal.
pub fn analyze_semantics(
&self,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
let mut errors = Vec::new();
for part in self.parts() {
if let MacroStringLiteralPart::MacroUsage { identifier, .. } = part {
if !macro_names.contains(identifier.span.str()) {
let err = error::Error::UnresolvedMacroUsage(UnresolvedMacroUsage {
span: identifier.span(),
});
handler.receive(err.clone());
errors.push(err);
}
}
}
#[expect(clippy::option_if_let_else)]
if let Some(err) = errors.first() {
Err(err.clone())
} else {
Ok(())
}
}
}
impl Expression {
/// Analyzes the semantics of an expression.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::Primary(prim) => prim.analyze_semantics(function_names, macro_names, handler),
Self::Binary(_bin) => {
// TODO: correctly analyze the semantics of the binary expression
Ok(())
}
}
}
}
impl Primary {
/// Analyzes the semantics of a primary expression.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::FunctionCall(func) => {
func.analyze_semantics(function_names, macro_names, handler)
}
Self::Lua(_) | Self::StringLiteral(_) | Self::Integer(_) | Self::Boolean(_) => Ok(()),
Self::MacroStringLiteral(literal) => literal.analyze_semantics(macro_names, handler),
Self::Identifier(_) | Self::Parenthesized(_) | Self::Prefix(_) => {
// TODO: correctly analyze the semantics of the primary expression
Ok(())
}
}
}
}
impl FunctionCall {
/// Analyzes the semantics of a function call.
pub fn analyze_semantics(
&self,
function_names: &HashSet<String>,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
let mut errors = Vec::new();
if !function_names.contains(self.identifier().span.str()) {
let err = error::Error::MissingFunctionDeclaration(
MissingFunctionDeclaration::from_context(self.identifier().span(), function_names),
);
handler.receive(err.clone());
errors.push(err);
}
for expression in self
.arguments()
.iter()
.flat_map(super::syntax::syntax_tree::ConnectedList::elements)
{
if let Err(err) = expression.analyze_semantics(function_names, macro_names, handler) {
handler.receive(err.clone());
errors.push(err);
}
}
#[expect(clippy::option_if_let_else)]
if let Some(err) = errors.first() {
Err(err.clone())
} else {
Ok(())
}
}
}
impl AnyStringLiteral {
/// Analyzes the semantics of any string literal.
pub fn analyze_semantics(
&self,
macro_names: &HashSet<String>,
handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
match self {
Self::StringLiteral(_) => Ok(()),
Self::MacroStringLiteral(literal) => literal.analyze_semantics(macro_names, handler),
}
}
}
impl VariableDeclaration {
/// Analyzes the semantics of a variable declaration.
pub fn analyze_semantics(
&self,
_function_names: &HashSet<String>,
_macro_names: &HashSet<String>,
_handler: &impl Handler<base::Error>,
) -> Result<(), error::Error> {
// match self {
// Self::Array(array) => array.assignment().as_ref().map_or(Ok(()), |assignment| {
// assignment
// .expression()
// .analyze_semantics(function_names, macro_names, handler)
// }),
// Self::Single(single) => {
// if let Some(assignment) = single.assignment() {
// let err = match single.variable_type().keyword {
// KeywordKind::Int => {
// !matches!(
// assignment.expression(),
// // TODO: also allow macro identifier but not macro string literal
// Expression::Primary(
// Primary::Integer(_)
// | Primary::Lua(_)
// | Primary::FunctionCall(_)
// )
// ) && !matches!(assignment.expression(), Expression::Binary(..))
// }
// KeywordKind::Bool => !matches!(
// assignment.expression(),
// Expression::Primary(
// Primary::Boolean(_) | Primary::Lua(_) | Primary::FunctionCall(_)
// )
// ),
// _ => false,
// };
// if err {
// let err = error::Error::UnexpectedExpression(UnexpectedExpression(
// assignment.expression().clone(),
// ));
// handler.receive(err.clone());
// return Err(err);
// }
// assignment
// .expression()
// .analyze_semantics(function_names, macro_names, handler)
// } else {
// Ok(())
// }
// }
// Self::Score(score) => {
// if let Some((_, assignment)) = score.target_assignment() {
// // TODO: also allow macro identifier but not macro string literal
// if !matches!(
// assignment.expression(),
// Expression::Primary(
// Primary::Integer(_) | Primary::Lua(_) | Primary::FunctionCall(_)
// )
// ) {
// let err = error::Error::UnexpectedExpression(UnexpectedExpression(
// assignment.expression().clone(),
// ));
// handler.receive(err.clone());
// return Err(err);
// }
// assignment
// .expression()
// .analyze_semantics(function_names, macro_names, handler)
// } else {
// Ok(())
// }
// }
// Self::Tag(tag) => {
// if let Some((_, assignment)) = tag.target_assignment() {
// if !matches!(
// assignment.expression(),
// Expression::Primary(Primary::Boolean(_) | Primary::Lua(_))
// ) {
// let err = error::Error::UnexpectedExpression(UnexpectedExpression(
// assignment.expression().clone(),
// ));
// handler.receive(err.clone());
// return Err(err);
// }
// assignment
// .expression()
// .analyze_semantics(function_names, macro_names, handler)
// } else {
// Ok(())
// }
// }
// }
// TODO: correctly analyze the semantics of the variable declaration
Ok(())
}
}